A single-cell bioluminescence imaging system for monitoring cellular gene expression in a plant body.

نویسندگان

  • Tomoaki Muranaka
  • Saya Kubota
  • Tokitaka Oyama
چکیده

Gene expression is a fundamental cellular process and expression dynamics are of great interest in life science. We succeeded in monitoring cellular gene expression in a duckweed plant, Lemna gibba, using bioluminescent reporters. Using particle bombardment, epidermal and mesophyll cells were transfected with the luciferase gene (luc+) under the control of a constitutive [Cauliflower mosaic virus 35S (CaMV35S)] and a rhythmic [Arabidopsis thaliana CIRCADIAN CLOCK ASSOCIATED 1 (AtCCA1)] promoter. Bioluminescence images were captured using an EM-CCD (electron multiply charged couple device) camera. Luminescent spots of the transfected cells in the plant body were quantitatively measured at the single-cell level. Luminescence intensities varied over a 1,000-fold range among CaMV35S::luc+-transfected cells in the same plant body and showed a log-normal-like frequency distribution. We monitored cellular gene expression under light-dark conditions by capturing bioluminescence images every hour. Luminescence traces of ≥50 individual cells in a frond were successfully obtained in each monitoring procedure. Rhythmic and constitutive luminescence behaviors were observed in cells transfected with AtCCA1::luc+ and CaMV35S::luc+, respectively. Diurnal rhythms were observed in every AtCCA1::luc+-introduced cell with traceable luminescence, and slight differences were detected in their rhythmic waveforms. Thus the single-cell bioluminescence monitoring system was useful for the characterization of cellular gene expression in a plant body.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...

متن کامل

Bioluminescence imaging of dual gene expression at the single-cell level.

Bioluminescence imaging reveals the long-term dynamics of individual gene expression in a single cell. However, methods for simultaneously imaging multiple gene expression patterns have been unknown to date. Here, we constructed a dual-path optical luminescence imaging system using a two-color reporter system and could simultaneously track two gene expression patterns for several days in a sing...

متن کامل

Triple Bioluminescence Imaging for In Vivo Monitoring of Cellular Processes

Bioluminescence imaging (BLI) has shown to be crucial for monitoring in vivo biological processes. So far, only dual bioluminescence imaging using firefly (Fluc) and Renilla or Gaussia (Gluc) luciferase has been achieved due to the lack of availability of other efficiently expressed luciferases using different substrates. Here, we characterized a codon-optimized luciferase from Vargula hilgendo...

متن کامل

Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line

Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...

متن کامل

In Vivo Detection of Extrapancreatic Insulin Gene Expression in Diabetic Mice by Bioluminescence Imaging

BACKGROUND Extrapancreatic tissues such as liver may serve as potential sources of tissue for generating insulin-producing cells. The dynamics of insulin gene promoter activity in extrapancreatic tissues may be monitored in vivo by bioluminescence-imaging (BLI) of transgenic mice Tg(RIP-luc) expressing the firefly luciferase (luc) under a rat-insulin gene promoter (RIP). METHODS The Tg(RIP-lu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 54 12  شماره 

صفحات  -

تاریخ انتشار 2013